
Performance Metrics for Intelligent Systems
An Engineering Perspective

Rong Gao and Lefteri H. Tsoukalas
Purdue University

School of Nuclear Engineering
Applied Intelligent Systems Laboratory

W. Lafayette, IN 47907-1290
gao@ecn.purdue.edu,  tsoukala@ecn.purdue.edu

ABSTRACT

This paper provides a general discussion on performance
metrics for intelligent systems drawing largely on our
experience with engineering applications.  The experience has
led us to view machine intelligence as a type of machine-
facilitated human intelligence.  This view implies that the
locus of machine intelligence is to be found in relations
amongst humans vis a vis the machine (in the subject-to-
subject-via-object relation).  Hence, quantitative metrics for
intelligence may be sought as functions of the human-
machine and machine-machine interface; evaluating them
may be achieved through a conventional behaviorist-type of
approach where a system is characterized by observing its
response to given inputs. Some guidelines for this process that
we found to be useful are discussed in the paper.

Keywords: Intelligence, Performance Metrics, Fuzzy Logic,
Neural Networks

1. INTRODUCTION

Since the onset of industrial revolution machines have been
developed to relieve humans from tedious work and reduce
the cost of producing goods and services. With the advent of
the digital computer, the industrial notion of machines as
artifacts capable of mechanical work has been greatly
expanded to include sophisticated capabilities of information
processing, decision-making, communications, sensing,
coordination and control.  Somewhat naively but, as we will
argue latter on, quite accurately, we tend to refer to this post-
industrial sophistication as “machine intelligence.”

Equipped with control and computing units, machines can be
made to be very predictable and quite reliable. The reliability
is exemplified by the fact that machines follow given
instructions literally regardless of changes in their
environment.  This characteristic is undesirable in complex
applications. Predefined instructions are usually coded by

human experts and make it nearly impossible to take into
account every possible scenario that might happen in real-
world applications. Therefore, it is desirable that machines
possess capabilities for appropriately handling cases that they
have not been directly instructed. Although there have been
numerous definitions of intelligence, engineers tend to think
that a machine or a system in general is intelligent if it is
capable of handling exceptions properly. In this respect the
engineering view is somewhat similar to that of the cognitive
scientists who look at various agnosias (for example, visual
agnosia  or failure to recognize objects seen) as opportunities
and tools for understanding the complex inner-workings of
the human brain (Gazzaniga, 1998). But, the engineering aim
is quite different.  Intelligent systems are transforming the
way we design, fabricate, operate and even dispose complex
engineering artifacts such as airplanes and power plants.  A
Boeing 777 airliner, for example, may have in excess of nine
million distinct parts, while the number for an advanced
boiling water reactor is the 109 range.  Intelligent systems are
necessary to make such systems safe, economical and
manageable at all times.

It should be noted that the adjective “intelligent” gradually
fades away from designating any system that becomes
routinely available and widely familiar.  Intelligence is an
attribution reserved for systems that are at a more nascent
level of development and more likely not proven or
established technology.  Building intelligent systems is a goal
that often appears to be quite elusive. Hence, having a metric
for intelligence, any metric, is useful not only for comparing
system A to system B, but also, for comparing system A at an
early age of development to system A at more mature level of
development. In this respect an index for intelligence is not
different from any metric of performance that can be
consistently applied to assess the growth of a system.  This a
very important issue for systems such as nuclear power plants
or passenger airliners whose lifespan may be comparable or
exceeding the lifespan of their designers and operators.

We have observed in numerous engineering applications that
a major difficulty giving rise to the elusiveness of machine



intelligence is due to our deeply held notions and assumptions
about machines.  Humans seem to be so overwhelmingly
prepared to think of machines as quite independent entities,
separate from us; distinct and also distinguished; sitting
outside the boundaries of human boundaries (physiologically,
cognitively, and socially); and yet so intimately ours.
Machines are always adjuncts to humans.  Although we
describe them in terms of objective qualities (such as power,
mass, volume) their most important attributes are the ones
relating to their functionality and purpose (interfacial
characteristics).  Intelligence is a functionality not an
objective property.  Yet, and because of that, machine
intelligence involves what the psychologists call reification,
that is, something appears to exist just because we have
word(s) for it.

The view we espouse is that machines, including the
sophisticated and computationally savvy artifacts of today and
tomorrow, are accessories to human intelligence.  They have
no intelligence of their own (to have that they would have to
live the lives of humans).  Intelligent systems are machines
functioning as a medium for playing out the drama of human
intelligence; principally activities for asking and answering
questions, a kind of generalized dialogue amongst humans
(not anymore constrained to be physically present).  Our view
defines intelligent systems as virtual interlocutors, that is as
systems that function in a way that makes it possible for
humans and other machines to ask and answer questions
unconstrained by personal presence or awareness.  In this
sense, machines can be viewed as “intelligent” although we
all know that they could not possibly come about on their
own, without human volition, know-how, design and material
implementation.

Viewing intelligent machines as “virtual interlocutors,” raises
the question of language.  What is the right idiom for the
man-machine discourse we are talking about? It has to be a
language that its ultimate aim is to facilitate a virtual dialogue
amongst humans and as such it is desirable to have the
computational characteristics of natural language.  For this,
we have to turn to fuzzy logic.  It is extremely difficult to
capture within any formal language the complex and rich
attributes of natural language including, but not limited to,
flexibility, semantic depth, computational economy
(parsimony), and portability.  We strongly believe that fuzzy
logic is a highly promising tool; its potential is largely
uncapped, its full power is still to be harnessed.

Additional frustrations with intelligent machines are caused
by the lack of a bridge that links any interpretation of
intelligence (such as the one put forward in this paper) to the
implementation of intelligence. Definitions of intelligence do
not often provide useful information needed by engineers in
the realization process. Engineers would like to have
quantitative performance metrics that could be used to
measure the degree of intelligence of a system. Defining a

performance metric is, however, not easier than building an
intelligent system itself. Theoretically, provided a quantitative
performance metric is available, methods can be developed to
optimize the system’s performance to reach a threshold that
this particular system is deemed intelligent. We have gathered
plenty of experience in designing optimization algorithms and
they are being used in a variety of applications involving
neural networks and fuzzy logic (Tsoukalas, 1997). The
research on performance metrics for intelligent systems is an
important focus. In the following sections we present a
general discussion and some guidelines for designing
performance metrics.

2. INTELLIGENT SYSTEMS

Researchers of artificial intelligence have traditionally
defined intelligence as an inherent property of a machine.  An
intelligent machine (or system) is viewed as one that has
some computational capacity to act like a human, that is,
“think” humanly, or “act” rationally, or “think” rationally
(Russel, 1985). Hence, computational metrics of intelligence
are traditionally expected to measure how well a machine
performs like a human, for example, like a chess master, or
like an expert diagnostician.

We believe that such thinking-like-human approaches trying
to mimic the way a mind operates are not technically feasible
with current engineering capabilities. First, the complexities
of human brain make simulation impossible using existing
technology. The latest Intel Pentium IV processor integrates
55 million transistors, much less than the 100 billion neurons
and 100 trillion synaptic junctions found in a person’s brain.
Second, the basic processing unit in a computer system, the
transistor, is identical throughout a processor and can only
handle two numbers, 0 and 1. On the other hand, neurons are
diversified and are capable of processing subtle
electrochemical signals efficiently in numerous possible
ways. Third, humans as complex biological systems are the
result of millions of years of natural selection. Many species
coexist but only humans have emerged as intelligent creatures
(in a full sense of the word).  And certainly part of their story
is found in language and their capacity to form complex
cultural and technical artifacts and social institutions.

We think of intelligence as an advanced functionality of a
system.  Based on the discussion above it is quite clear that
this type of functionality should be independent of a
machine’s internal implementation details. We propose that
this functionality is a function of the interface (human-
machine, machine-machine); to be found in the subject-to-
subject relation vis a vis the object, that is, the computer or
“intelligent machine.”  In order for the intelligent
functionality to be something observable (measurable), the
intelligence of a system ought to be judged based on a
system’s response to provided inputs. The internal structure



and implementation may be not so important for the purpose
of observing it.

But, is it really possible to measure intelligence
quantitatively?  We believe that the answer ought to be yes;
else, we run the risk of viewing machine intelligence as
something metaphysical, mysterious and therefore not
amenable to investigation.  Methodologically, we know that it
is very hard to quantify machine intelligence. The reason is
that any intelligence measure has to be an overall
performance index involving many detailed measures. For
example, an intelligent person may be extraordinarily good at
math but very poor in music. For another person the opposite
may be true (capable in music but incapable at math).
Obviously there is no single number that can be used to
characterize the difference between these two persons.
Human IQ tests have been criticized for their non-typicality,
unreliability and inconsistency. The incommensurability of
intelligence is a barrier we have to face with intelligent
machines as well; and not only because they are used or they
are better at different things. Evidently, it is different humans
that make for very different intelligent machines.

Despite all these difficulties, defining performance metrics for
intelligent systems is a worthy goal. People realize that the
long lack of universally acceptable measures has seriously
hampered the process of intelligent systems development.
Science and technology have advanced by cooperation and
competition. The root of cooperation and competition is a
common ground with which results of different researchers
can be compared. Comparisons are impossible without
agreement on performance metrics.

Some philosophical and methodological barriers to intelligent
metrics can be overcome by adopting a pragmatic approach.
Such an approach focuses on the specifics of the problem and
calls for strategies for improvement (learning) and
development (maturation) within a given context and with
well-defined metrics. Thus, for the first step a pragmatic
approach is to identify the needs of the applications. What are
the situations that intelligent systems are designed for? Are
we going to develop an intelligent system that clones a human
being (in some way) or solve a specific problem (for the
benefit of well-defined user needs)? Undoubtedly, the efforts
involved in designing performance metrics for these two
different systems are rather incomparable.

3. GENERAL GUIDELINES

In this section we present five items we found important in
designing performance metrics. They are intended to be
general guidelines.  A comprehensive performance metric
should take into account all five of the proposed items.  The
first describes a questionnaire-based method similar to
approaches taken for knowledge solicitation in well-defined

application domains. The second identifies the capacity for
generalization.  The third item identifies the need for
adaptation.  The fourth captures the social or group
capabilities of intelligent systems.  Finally, the fourth
identifies transitivity or how different intelligent systems
ought to be comparable.

3.1 General and Specific Metrics

Detailed quantitative metrics of general intelligence are
difficult to formulate and potentially not necessary.
Intelligence in general integrates so many parameters and is
not possible to have an objective general measure. However,
approximate and application oriented measures are possible.
It is a lot easier to develop a metric to evaluate the
performance of some system for a specific application like
chess playing or medical diagnosis.  Therefore, if possible,
application-specific measures should be always considered
first. Application-specific measures can be constructed based
on a set of questionnaires.  Techniques from knowledge
solicitation and web-based assessments can be used.
Questionnaires can be analyzed via statistical approaches or
fuzzy quantification (Tsoukalas, 1997).

A Computer that acts humanly A Computer that performs a specific job

V.S.

Figure 1. General intelligence and specific intelligence

3.2 Metric for Generalization Capabilities

The degree of intelligence ought to reflect in some fashion the
capacity for generalization. An intelligent system solves a
problem first by searching its previous experience for similar
cases. The first level of intelligence is looking for a direct
match.  A higher level of intelligence is needed when a direct
match is unavailable. The higher level of intelligence appears
as the capability of maneuvering experience in part in order to
generate new unseen instances, which resemble the problem
to solve, as shown in figure 2. Suppose, for example, that the
problem is to classify some unknown shape.  The direct match
is the first approach and essentially compares the given shape
against ideal geometrical shapes.  The indirect match may do
the matching against generalized instances and more
generally against composite generalized instances.  An
appropriate metric in this example ought to capture the ability
of the system to deal with the more general topological
transformations involved in the indirect matches. Although a
lot has been written for generalization, typically
generalization in many engineering applications is little
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Figure 2. An illustration of different levels of generalizations

different from interpolation.  But, that’s fine.  Even a good
interpolation metric is adequate and very useful if applied
consistently as a measure of generalization.

3.3 Intelligence Metric should be Adaptive

The intelligence of a system cannot really be evaluated by a
fixed rule. Rather it ought to be a collective index that reflects
the overall performance of the evaluated system on a variety
of situations. Consequently, this metric should be dynamic
and adaptive.  It should change to adapt to the new
information that has been gathered regarding a system’s more
recent performance.  In this respect a simple neural network
can be very useful as means of adaptation of the metric (even
though the range of adaptation may be rather narrow).

3.4 Intelligence as a Social Characteristic

From an engineering viewpoint, an isolated system, no matter
how intelligent it is, is not of great interest. Measuring
intelligence should be performed in the context of a group or
society that includes other systems (computers or humans), as
shown in figure 3. Any intelligent ability ought to be
evaluated from the interrelations among multiple systems.  In
a sense the kind of machine intelligence we are called to
quantify almost always involves network systems, be they
computers, sensors, robotic devices, controllers, expert
systems, or search engines in the Internet.  The criteria for
judging the social abilities of interacting systems are the
correctness of interpretations of their inputs and the
effectiveness of presentation of the outputs.

latigid

Figure 3: System and its environment

If a system is put into a society, we have to consider its
relations with other parties. In a society, a system always
stores in its local database the profiles of other systems that it
knows. In order words, the intelligence profile of a system is
distributed to the society. The argument that an intelligence
metric should be dynamic and adaptive requires that a system
be constantly monitored. Assigning a dedicated agent to
perform this job will be biased and unreliable. The solution is
that any system ought to be examined by its peers (the rest of
the systems in the same society). This implies that an
intelligent system (human or computers) should posses the
ability to evaluate the intelligence of other systems. However,
it is impossible for one system to evaluate all other systems
directly, partly because of security reasons or simply because
of the exponentially growing communication overhead. In
such cases, one system needs to reach its own judgment
indirectly based on the judgment (which may be direct or
indirect one) of other systems. For example, in figure 4,
System 1 is about to evaluate the performance of System 3.
However, System 1 has no means to communicate with
System 3 directly. In such a scenario, it is possible for System
1 to reach a decision based on the evaluations obtained from
System 2 and System 4 (with which it has direct connections).
The third party information might be direct (such as System 2
that has direct connection with System 3) or indirect (such as
System 4, which in return relies on System 5 to make its own
decision). To achieve this type of feature, a system needs to
“trust” to some degree the capabilities of other systems.

3.5 Transitivity

Finally any intelligence metric should be used with care,
especially when comparisons are involved. The direct
comparison between two systems using an intelligence metric
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Figure 4. Indirect evaluation of intelligence

remains questionable, except when this metric has been
defined in a very narrow sense such as for the performance of
a specific job such as medical diagnosis. Generally, we should
avoid the use of an intelligence metric in a chained fashion
because of its inherent uncertainty and incommensurability.
For instance, system A is more intelligent than system A,
which is more intelligent than system C.  Yet, it is not correct
to imply that system A is more intelligent than C.

4. A PROTOTYPE FOR GENERAL M EASURES

An intelligence metric in general is difficult to be written in
an analytical form. However, an engineering construction
approach may be useful. The process of evaluating
intelligence itself is an intelligent process. To break this
infinite loop, we must start from some systems that are
canonically intelligent. Humans are the main option. Some
prototype machine systems are first constructed and are
approved to be intelligent by humans. These initial systems
are not necessarily perfect in terms of natural intelligence.
The criteria of intelligence are numerous and the most
important one is the capacity of judging the intelligence of
other systems. The intelligence evaluation process is not a
calibration process where a less precise machine is able to
calibrate a more precise one. A more pragmatic approach is
needed.  The prototypes that have been evaluated by humans
now can evaluate other machines, as shown in figure 5. The
evaluated systems can be further used to evaluate other
systems. It should be noted that this is not a one shot
operation and the first round of evaluation is usually
inaccurate. In later iterations, every system (including the first
prototype) will have the chance to improve its evaluation
capability by comparing others’ evaluations with its own one.
A steady state for the system, if reachable, informs us that it
has achieved stable and more accurate evaluations for other
systems. The key of this approach is that an intelligent system
is able to talk to its neighbors.

Human
Prototype

Propagation of Intelligence Measure

Figure 5. Construct intelligence metric in a networking
approach

5. CONCLUSIONS AND REMARKS

We have discussed several important guidelines for intelligent
metrics. The key is to focus on the interface (machine-
machine, machine-human). A system’s intelligence is
reflected by the ways of processing inputs and presenting
outputs. The interface not only accepts problem-solving data
but only those “control” or “judgment” pieces of information,
such as evaluations by other systems.

Over the years there has been a great interest in constructing
intelligent systems not only because machines can potentially
solve problem more consistently and flexibly (with human
supervision) but also because intelligent systems are a great
metaphor for intelligent human activities.  The activities of
posing and answering questions and of building knowledge
through a dialectic process are now greatly facilitated by
computer systems which we tend to view as “intelligent.” The
results are an unprecedented and much needed access to the
human mind.  And, machines that not only surprise and
fascinate us but, most importantly, we cannot do without
them; in the sense that we cannot really manage the
complexity of exceeding complicated engineering artifacts
that come to be over several generations.

However, there is no free lunch. The associated cost is the so
called responsibility dilemma . A system is intelligent because
it is capable of handling exceptions that it was never taught.
The question then may be raised as to who should be
responsible for the consequence incurred by the “intelligent
actions.” The designer of the system should not be blamed
because the system does not follow instructions literally and
the designer can not foresee the direction that the system
evolves. These issues have to be addressed and if possible
reflected in future intelligence metris.
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